

Notes by: - Rajan Shukla

Unit-I Basic Syntactical constructs in java

Introduction to java

 James Gosling of sun micro-system created java in 1991.

 The original name of java is OAK. OAK is a name of tree, but later the language was change

in the JAVA.

 Belongs to Sun- stand ford university network

 In 2010 jan 27 oracle corporation acquired sun microsystem.

Java Application/packages(edition)(API) (in 1995,completed java with three edition)

 By using java, we can develop the desktop application, enterprise edition application, &

device application.

 To develop desktop application JSE is used(java platform standard edition)

 To develop enterprise application JEE is used(java platform enterprise edition)

 To develop device application JME is used.(java platform micro-edition).

 Old version are J2SE, J2ME, J2EE &

 new version are JSE, JME, JEE

 Core java belongs to JSE.

1.1. Java Features and Java Programming Environment

1.1.1. Java Features

There are many features of JAVA. They are also known as JAVA buzzwords.

1. Simple

2. Object-Oriented

3. Platform independent

4. Secured

5. Robust

6. Architecture neutral

7. Portable

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

Notes by: - Rajan Shukla

1. Simple

• JAVA is Easy to write and more readable and eye catching

• JAVA has a concise, cohesive set of features that makes it easy to learn and use.

• Most of the concepts are drawn from C++ thus making JAVA learning simpler

2. Object-Oriented

• JAVA programming is object-oriented programming language

• Like C++, JAVA provides most of the object oriented features

• JAVA is pure OOPS Language. (while C++ is semi object oriented).

3. Platform independent

 A platform is the hardware or software environment in which a program runs.

There are two types of platforms software-based and hardware-based. JAVA

provides software based platform.

 The JAVA platform differs from most other platforms in the sense that it's a

software-based platform that runs on top of other hardware-based platforms.

It has two components.

• Runtime Environment

• API(Application Programming Interface)

JAVA code can be run on multiple platforms E.G.–Windows,Linux,Sun

Solaris,Mac/OS etc. JAVA code is compiled by the compiler and converted into bytecode.

This bytecode is a platform independent code because it can be run on multiple

platforms i.e. Write Once and Run Anywhere(WORA).

4. Secured

JAVA is secured because

• No explicit pointer

• Programs run inside virtual machine sandbox.

• Class loader – adds security by separating the package for the classes of the local file

system from those that are imported from network sources

• Byte code Verifier – checks the code fragments for illegal code that can violate access right

to objects

• Security Manager – determines what resources a class can access such as reading and

writing to the local disk These security are provided by JAVA language. Some security can

also be provided by application developer through SSL, JAAS, cryptography etc.

Notes by: - Rajan Shukla

5. Robust

 JAVA makes an effort to eliminate error prone codes by emphasizing mainly on

compile time error checking and runtime checking. But the main areas which JAVA

improved were Memory Management and mishandled Exceptions by introducing

automatic Garbage Collector and Exception Handling.

6. Architecture neutral

• JAVA is not tied to a specific machine or operating system architecture

• Machine Independent i.e JAVA is independent of hardware

• Compiler generates byte codes, which have nothing to do with a particular computer

architecture, hence a JAVA program is easy to interpret on any machine

7. Portable

• JAVA programs can execute in any environment for which there is a JAVA runtime

system(JVM)

• JAVA programs can be run on any platform (Linux,Window,Mac)

• JAVA programs can be transferred over world wide web (e.g applets)

8. Dynamic

• JAVA programs carry with them substantial amounts of run-time type information that is

used to verify and resolve accesses to objects at run time

9 Interpreted

• JAVA supports cross-platform code through the use of JAVA bytecode

• Byte code can be interpreted on any platform by JVM

10. High Performance

JAVA is an interpreted language, so it will never be as fast as a compiled language

like C or C++. But, JAVA enables high performance with the use of just-in-time compiler.

11. Multithreaded

A thread is like a separate program, executing concurrently. One can write JAVA

programs that deal with many tasks at once by defining multiple threads. The main advantage

of multi-threading is that it shares the same memory. Threads are important for multi-media,

Web applications etc.

12. Distributed

• JAVA was designed with the distributed environment

Notes by: - Rajan Shukla

• JAVA can be transmit, run over internet

1.1.2. Java Programming Environment

 JAVA development environment includes a number of development tools, classes and

methods.

 It is a part of the system known as JAVA Development kit (JDK).

 The classes and methods are part of the JAVA standard library known as JSL, and it is

known as the application Programming Interface(API).

 The java runtime environment is supported by Java Virtual Machine(JVM).

1. JAVA Development Kit (JDK)

The JDK kit is a collection of tools which are used for developing designing,

debugging , executing and running JAVA programs. JDK kit includes

• appletviewer (for viewing JAVA applets) –

It enables to run JAVA applets (without actually using a JAVA-compatible browser)

• javac (JAVA compiler)–

JAVA compiler is used to compile JAVA files. JAVA compiler components of JDK is

accessed using “javac” command.

E.G. – C:\>JAVAc filename.JAVA

• java (java interpreter)

JAVA interpreter is used to interpret the JAVA files that are compiled by JAVA

compiler. JAVA interpreter components of JDK is accessed using “JAVA” command.

E.G. – C:\>JAVA filename

• javap (JAVA disassemble) –

JAVA disassembler, which enables to convert bytecode files into a program

description.

• javah (for C header files) – produces header files for use with native methods

• Javadoc (for creating HTML documents) – creates html-format documentation from

JAVA source code files

• jdb (JAVA debugger) – JAVA debugger, which helps us to find errors in our program

The following Fig. describes the tools used in JAVA environment.

Notes by: - Rajan Shukla

Fig. Execution process of java application program

2. JAVA Virtual Machine(JVM) & Byte Code

 JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides

runtime environment in which java bytecode can be executed.

 JVMs are available for many hardware and software platforms (i.e. JVM is platform

dependent).

independence in java.

The JVM performs following operation:

 Loads code

 Verifies code

 Executes code

 Provides runtime environment

ByteCode

Java bytecode is the instruction

set for the Java Virtual Machine. It acts

similar to an assembler which is an alias

representation of a C++ code. As soon as

a java program is compiled, java

bytecode is generated. In more apt terms,

java bytecode is the machine code in the

form of a .class file. With the help of

java bytecode we achieve platform

Notes by: - Rajan Shukla

When we write a program in Java, firstly, the compiler compiles that program and a

bytecode is generated for that piece of code. When we wish to run this .class file on any other

platform, we can do so. After the first compilation, the bytecode generated is now run by the

Java Virtual Machine and not the processor in consideration. This essentially means that we

only need to have basic java installation on any platforms that we want to run our code on.

Resources required to run the bytecode are made available by the Java Virtual Machine,

which calls the processor to allocate the required resources. JVM's are stack-based so they

stack implementation to read the codes.

1.1.3. Simple Java Programming

How to Write and compile the Simple JAVA Program?

For executing any JAVA program, one need to

 Install the JDK.

 Set path of the jdk/bin directory

 Compile and run the JAVA program

After installing JDK, set the path using following command,

Right click on My computer -> properties -> environmental

New- variable name- ‘Path’, variable value – “C:\Program Files\JAVA\jdk1.6.0\bin”

To create a simple JAVA program, one need to create a class that contains main

method. Open notepad Write this program.

class Simple

{

public static void main(String args[])

{

System.out.println("Hello JAVA");

}

}

Save this file as Simple.java

To compile – javac Filename.java // create Filename.class file

To execute – java Classname // Display output

Open Command Prompt to Compile & Execute JAVA program

C:\Program Files\JAVA\jdk1.6.0\bin> javac Simple.JAVA // Simple.class Created

C:\Program Files\JAVA\jdk1.6.0\bin> java Simple

variable -> user variable

Notes by: - Rajan Shukla

Hello JAVA

Understanding first JAVA program

Meaning of class, public, static, void, main, String[], System.out.println().

 class keyword is used to declare a class in JAVA

 public keyword is an access modifier which represents visibility, it means it is visible to all

 static is a keyword, if one declare any method as static, it is known as static method. The core

advantage of static method is that there is no need to create object to invoke the static method.

The main method is executed by the JVM, so it doesn't require to create object to invoke the

main method. So it saves memory

 void is the return type of the method, it means it doesn't return any value

 main represents startup of the program

 String[] args is used for command line argument. This is explained later

 System.out.println() is used print statement. The internal working of System.out.println

statement is explained later

Different codes to write the main method

 public static void main(String[] args)

 public static void main(String []args)

 public static void main(String args[])

 public static void main(String... args)

1.2. Defining a class, creating object and accessing class members

1.2.1. Class

A class is a group of objects that has common properties. It is a template or blueprint from

which objects are created.

A class in JAVA can contain

 data member

 method

 constructor

 block

 class and interface

Syntax to declare a class

class <class_name>

{

Notes by: - Rajan Shukla

data member;

method;

}

A simple class example

class student

{

String name;

int rollno;

int age;

}

When a reference is made to a particular student with its property then it becomes an object,

physical existence of Student class.

student std=new student();

After the above statement std is instance/object of Student class. Here the new keyword creates an

actual physical copy of the object and assign it to the std variable.

1.2.2. Object

An entity that has state and behavior is known as an object E.G. chair, bike, marker, pen,

table, car etc. It can be physical or logical.

Simple Example of Object and Class

In this example, a Student class is creator that have two data members viz. id and name. The

object of the Student class is created by new keyword and printing the objects value.

class Student

{

int id; //data member (also instance variable)

String name; //data member(also instance variable)

public static void main(String args[])

{

Student s1=new Student1(); //creating an object of Student

System.out.println(s1.id);

System.out.println(s1.name);

}

}

Notes by: - Rajan Shukla

void displayInformation() //method

System.out.println(rollno+" "+name);

}

public static void main(String args[])

This object will produce the following result

0 null

1.2.3. new keyword

The new keyword is used to allocate memory at runtime.

Object and class that maintains the records of students

Example-1

In this example, the two objects of Student class are created and initializing the value to these

objects by invoking the insertRecord method on it. Here, the state (data) of the objects are displayed

by invoking the display Information method.

class Student

{

int rollno;

String name;

rollno=r;

name=n;

}

{

{

Student s1=new Student2();

Student s2=new Student2();

s1.insertRecord(111,"Riya");

s2.insertRecord(222,"Amol");

s1.displayInformation();

s2.displayInformation();

}

}

{

void insertRecord(int r, String n) //method

Notes by: - Rajan Shukla

void calculateArea()

public static void main(String args[])

This will produce the following result

111 Riya

222 Amol

Example-2 of Object and Class

There is given another example that maintains the records of Rectangle class. Its explanation

is same as in the above Student class example.

class Rectangle

{

int length;

int width;

void insert(int l, int w)

{

length=l;

width=w;

}

{

System.out.println(length*width);

}

{

Rectangle r1=new Rectangle();

Rectangle r2=new Rectangle();

r1.insert(11,5);

r2.insert(3,15);

r1.calculateArea();

r2.calculateArea();

}

}

This will produce the following result

Notes by: - Rajan Shukla

String name="CoreJava";

55

45

1.2.4. Method in JAVA

Method describe behavior of an object. A method is a collection of statements that are group

together to perform an operation.

Syntax of method is

return-type methodName(parameter-list)

{

//body of method

}

Example of a Method

public String getName(String st)

{

name=name+st;

return name;

}

1.3. JAVA Tokens

Tokens are the various JAVA program elements which are identified by the compiler. A

token is the smallest element of a program that is meaningful to the compiler. Tokens supported in

JAVA include keywords, variables, constants, special characters, operations etc.

Tokens are the smallest unit of Program. There is Five Types of Tokens

 Reserve Word or Keywords

 Identifier

 Literals

 Operators

 Separators

1.3.1. JAVA Key Words

In the JAVA programming language, a keyword is one of 50 reserved words. that have a

predefined meaning in the language; because of this, programmers cannot use keywords as names

for variables, methods, classes, or as any other identifier.

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Reserved_word
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Identifier

Notes by: - Rajan Shukla

Constants in JAVA are fixed values those are not changed during the Execution of

program JAVA supports several types of Constants those are

abstract assert boolean break byte case

catch char class const* continue default

double do else enum extends false

final finally float for goto* if

implements import instanceof int interface long

native new null package private protected

public return short static strictfp super

switch synchronized this throw throws transient

true try void volatile while

Even though “goto’ and “const” are no longer used in the JAVA programming language, they

still cannot be used.

1.3.2. Constants

Integer Constants

Integer Constants refers to a Sequence of digits which Includes only negative or positive Values and

many other things those are as follows

 An Integer Constant must have at Least one Digit

 It must not have a Decimal value

 It could be either positive or Negative

 If no sign is Specified then it should be treated as Positive

 No Spaces and Commas are allowed in Name

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

Notes by: - Rajan Shukla

Real Constants

 A Real Constant must have at Least one Digit

 It must have a Decimal value

 It could be either positive or Negative

 If no sign is Specified then it should be treated as Positive

 No Spaces and Commas are allowed in Name

 Like 251, 234.890 etc are Real Constants

In The Exponential Form of Representation the Real Constant is Represented in the two Parts The

part before appearing e is called mantissa whereas the part following e is called Exponent.

 In Real Constant The Mantissa and Exponent Part should be Separated by letter “e”

 The Mantissa Part have may have either positive or Negative Sign

 Default Sign is Positive

Single Character Constants

A Character is Single Alphabet a single digit or a Single Symbol that is enclosed within Single

inverted commas.

Like ‘S’ ,’1’ etc are Single Character Constants

String Constants

String is a Sequence of Characters Enclosed between double Quotes These Characters may be digits ,

Alphabets Like “Hello” , “1234” etc.

Backslash Character Constants

JAVA Also Supports Backslash Constants. These are used in output methods. E.G. – \n is used for

new line Character These are also Called as escape Sequence or backslash character Constants.

E.G.

\t For Tab (Five Spaces in one Time)

\b Back Spac

\f form feed

\n line feed

\r carriage reurn

\” double quote

\’ single quote

\\ blackslash

1.3.3. Variable

Variable is name of reserved area allocated in memory.

E.G. – int data = 50; // Here data is variable

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

Notes by: - Rajan Shukla

There are three types of variables in JAVA

 Local variable – a variable that is declared inside the method is called local variable

 Instance variable – a variable that is declared inside the class but outside the method is

called instance variable . It is not declared as static

 Static variable – a variable that is declared as static is called static variable. It cannot be local

Variable declarations example

int maxAge;

int x, y, selectedIndex;

char a, b;

boolean flag;

double maxVal, massInKilos;

Variable initialization in declaration example

int timeInSeconds = 245;

char a = 'K', b = '$';

boolean flag = true;

double maxVal = 35.875;

Types of variables example

class A

{

int data=50; //instance variable

static int m=100; //static variable

void method()

{

int n=90; //local variable

}

} //end of class

1.3.4. Data Types in JAVA

In JAVA, there are two types of data types

 Primitive data types

 Non-primitive data types

Notes by: - Rajan Shukla

Data Type Default Value Default size

boolean FALSE 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

String Objects

A string in JAVA is not a primitive data type. It is an object from the system defined class

String.

String constants example

"watermelon", "fig", "$%&*^%!!", "354", " " (space), "" (null string)

The string declaration example

String item = "apple";

This declaration is short for the object declaration.

String item = new String("apple");

Notes by: - Rajan Shukla

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays of any

type can be created and may have one or more dimensions. A specific element in an array is accessed

by its index. Arrays offer a convenient means of grouping related information.

1.4. Operator and Expression

Operators are special symbols used for mathematical functions, some types of assignment

statements, and logical comparisons.

An expression is a statement that can convey a value. Some of the most common expressions

are mathematical E.G.

int x = 3;

int y = x;

int z = x * y

JAVA provides a rich set of operators to manipulate variables. One can divide all the JAVA

operators into the following groups

1. Arithmetic Operators

2. Increment & Decrement Operators

3. Relational Operators

4. Bitwise Operators

5. Logical Operators

6. Assignment Operators

1.4.1. Arithmetic Operators

Arithmetic operators are used in mathematical expressions.

Considered two variables A & B

Operator Meaning Syntax

+ Addition A + B

- Subtraction - A - B

* Multiplication - A * B

/ Division - A / B

% Modulus A% B

++ Increment - Increases the value of operand by 1 A++ ,

-- Decrement - Decreases the value of operand by 1 A --

Notes by: - Rajan Shukla

The following Program Demonstrate the use of Basic arithmetic operators

public class ArithmDemo

{

public static void main(String[] args)

{

int add = 2 + 4;

System.out.println("2 + 4 = " + add);

int subtract = 10 - 3;

System.out.println("10 - 3 = " + subtract);

int divide = 6/2;

System.out.println("6 / 2 = " + divide);

int multiply = 5 * 5;

System.out.println("5 * 5 = " + multiply);

int modulus = 7 % 2;

System.out.println("7 % 2 = " + modulus);

}

}

The output from above program will be

2 + 4 = 6

10 - 3 = 7

6 / 2 = 3

5 * 5 = 25

7 % 2 = 1

1.4.2. Increment and Decrement Operators

The increment operator increases its operand by one. The decrement operator decreases

its operand by one.

E.G.

x = x + 1;

The above statement can be rewritten by using the increment operator

x++;

Similarly, the statement

x = x – 1

is equivalent to

x--;

The following program demonstrates the increment operator.

class IncDec

{

Notes by: - Rajan Shukla

public static void main(String args[])

{

int a = 1;

int b = 2;

int c;

int d;

c = ++b;

d = a++;

c++;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}

}

1.4.3. Relational Operators

The relational operators determine the relationship that one operand has to the other.

Operator Meaning Syntax

== Equal to (A == B)

!= Not equal to (A != B)

> Greater than (A > B)

< Less than (A < B)

>= Greater than or equal to (A >= B)

<= Less than or equal to (A <= B)

Following program demonstrate the use of Relational Operator ==, !=, >, <, >= and <=

class RelOptrDemo

{

public static void main(String[] args)

{

int a = 10, b = 15, c = 15;

System.out.println("Relational Operators and returned values");

System.out.println(" a > b = " + (a > b));

Notes by: - Rajan Shukla

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

System.out.println(" a < b = " + (a < b));

System.out.println(" b >= a = " + (b >= a));

System.out.println(" b <= a = " + (b <= a));

System.out.println(" b == c = " + (b == c));

System.out.println(" b != c = " + (b != c));

}

}

Output from above program will be

a > b = false

a < b = true

b >= a = true

b <= a = false

b == c = true

b != c = false

1.4.4. Bitwise Operators

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b =

13; now in binary format, value of a & b will be

a = 0011 1100

b = 0000 1101

Operator Description Syntax

& Bitwise AND (A & B)

| Bitwise OR (A | B)

^ Bitwise exclusive OR (A ^ B)

~ Bitwise unary NOT (~A).

<< Shift left A << 2

>> Shift right A >> 2

>>> Shift right zero fill A >>>2 will give 15 which is 0000 1111

Notes by: - Rajan Shukla

c = ~a; /*-61 = 1100 0011 */

System.out.println("~a = " + c);

c = a << 2; /* 240 = 1111 0000 */

System.out.println("a << 2 = " + c);

c = a >> 2; /* 215 = 1111 */

System.out.println("a >> 2 = " + c);

c = a >>> 2; /* 215 = 0000 1111 */

The following is the Demonstrating example of Bitwise Operators

public class Test

{

public static void main(String args[])

{

int a = 60; /* 60 = 0011 1100 */

int b = 13; /* 13 = 0000 1101 */

int c = 0;

c = a & b; /* 12 = 0000 1100 */

System.out.println("a & b = " + c);

c = a | b; /* 61 = 0011 1101 */

System.out.println("a | b = " + c);

c = a ^ b; /* 49 = 0011 0001 */

System.out.println("a >>> 2 = " + c);

}

}

Output from above program will be

a & b = 12

a | b = 61

a ^ b = 49

~a = -61

a << 2 = 240

a >> 15

a >>> 15

System.out.println("a ^ b = " + c);

Notes by: - Rajan Shukla

public static void main(String args[])

1.4.5. Logical Operators

Assume Boolean variables A holds true and variable B holds false then the following table

lists the logical operators

Operator Description Syntax

&& Logical AND operator. If both the operands are non-zero,

then the condition becomes true.

(A && B) is false.

|| Logical OR Operator. If any of the two operands are non-

zero, then the condition becomes true.

(A || B) is true.

! Logical NOT Operator. Use to reverses the logical state of its

operand. If a condition is true then Logical NOT operator will

make false.

!(A && B) is true.

The following program Demonstrates the use of logical operators.

public class Test

{

{

System.out.println("!(a && b) = " + !(a && b));

}

}

Output from above program will be

a && b = false

a || b = true

!(a && b) = true

1.4.5. Assignment Operators

Following assignment operators are supported by JAVA

System.out.println("a || b = " + (a||b));

System.out.println("a && b = " + (a&&b));

boolean b = false;

boolean a = true;

Notes by: - Rajan Shukla

The following program demonstrates the assignment operators

public class Test

{

public static void main(String args[])

{

Operator Description Syntax/Example

= Simple assignment operator, Assigns values from right

side operands to left side operand

C = A + B will assign

value of A + B into C

+= Add AND assignment operator, It adds right operand to

the left operand and assign the result to left operand

C += A is equivalent to C

= C + A

-= Subtract AND assignment operator, It subtracts right

operand from the left operand and assign the result to

left operand

C -= A is equivalent to C =

C - A

*= Multiply AND assignment operator, It multiplies right

operand with the left operand and assign the result to left

operand

C *= A is equivalent to C =

C * A

/= Divide AND assignment operator, It divides left operand

with the right operand and assign the result to left

operand

C /= A is equivalent to C =

C / A

%= Modulus AND assignment operator, It takes modulus

using two operands and assign the result to left operand

C %= A is equivalent to C

= C % A

<<= Left shift AND assignment operator C <<= 2 is same as C = C

<< 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C

>> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C &

2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C = C ^

2

|= bitwise inclusive OR and assignment operator C |= 2 is same as C = C | 2

Notes by: - Rajan Shukla

System.out.println("c /= a = " + c);

int a = 10;

int b = 20;

int c = 0;

c = a + b;

System.out.println("c = a + b = " + c);

c += a ;

System.out.println("c += a = " + c);

c -= a ;

System.out.println("c -= a = " + c);

c *= a ;

System.out.println("c *= a = " + c);

a = 10;

c = 15;

c /= a ;

}

}

Output from above program will be

c = a + b = 30

c += a = 40

c -= a = 30

c *= a = 300

c /= a = 1

c %= a = 5

c <<= 2 = 20

c >>= 2 = 5

c >>= 2 = 1

c &= a = 0

c ^= a = 10

c |= a = 10

Notes by: - Rajan Shukla

b = (a == 10) ? 20 : 30;

System.out.println("Value of b is : " + b);

Value of b is : 30

Value of b is : 20

Special Operators

There are few other operators supported by JAVA Language.

1.4.6 Conditional Operator (? :)

Conditional operator is also known as the ternary operator. This operator consists of three

operands and is used to evaluate Boolean expressions.

The operator is written as follows

variable x = (expression) ? value if true : value if false

The following program demonstrates the conditional operator

public class Test

{

public static void main(String args[])

{

int a , b;

a = 10;

b is : " + b);

}

}

Output from above program will be

1.4.7. instanceof Operator

This operator is used only for object reference variables. The operator checks whether the

object is of a particular type (class type or interface type).

instanceof operator is wriiten as

(Object reference variable) instanceof (class/interface type)

The following program demonstrates the instanceof operator

public class Test

{

public static void main(String args[])

b = (a == 1) ? 20 : 30;

System.out.println("Value of

Notes by: - Rajan Shukla

{

String name = "James"; // following will return true since name is type of String

boolean result = name instanceof String;

System.out.println(result);

}

}

Output from above program will be

true

1.4.8. Precedence of JAVA Operators

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others;

E.G. – the multiplication operator has higher precedence than the addition operator

E.G. – x = 7 + 3 * 2; here x is assigned 13, not 20 because operator * has higher precedence than +,

so it first gets multiplied with 3*2 and then adds into 7.

Category Operator Associativity

Postfix () [] . (dot operator) Left toright

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ? : Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Notes by: - Rajan Shukla

1.4.9. Mathematical functions

 Java provides a support for performing mathematical operations by means of mathematical

functions.

 The basic mathematical functions are defined in the math class defined in java.lang package.

 Various mathematical functions are

sin(double angle) Returns the sine of angle in radians

cos(double angle) Returns the cosine of angle in radians

tan(double angle) Returns the tan of angle in radians

asin(double val) Returns the angle whose sine is val

acos(double val) Returns the angle whose cosine is val

atan(double val) Returns the angle whose tan is val

pow(double a, double b) It computes ab

exp(double a) It computes ea

sqrt(double a) It computes square root of a

max(a,b) It computes the maximum of a & b

min(a,b) It computes the minimum of a & b

log(val) It computes the logarithm values of val

abs(val) It computes the absolute value of val

ceil(val) It returns the smallest whole no. which is greater

than or equal to val

floor(val) It returns the largest whole no. which is lesser than or

equal to val

Program for demonstrating mathematical functions

class MathDemo

{

public static void main(String args[])

{

double val=25;

System.out.println(“The square root of ” +val+ “is” +Math.sqrt(val));

int a=10, b=20;

System.out.println(“The maximum of ” +a+ “ and” +b+ “is”+Math.max(a,b));

System.out.println(“The minimum of ” +a+ “ and” +b+ “is”+Math.min(a,b));

Notes by: - Rajan Shukla

System.out.println(“The sine of ” +val+ “is” +Math.sin(val));

System.out.println(“The cosine of ” +val+ “is” +Math.cos(val));

}

}

Output from above program will be

The square root of 25.0 is 5.0

The maximum of 100 and 20 is 20

The minimum of 10 and 20 is 10

The sin of 25.0 is -0.13235175009777303

The cos of 25.0 is 0.9912028118634736

1.5. Decision making and looping

JAVA language supports two types of selections statements

 if statements

 switch statements

1.5.1. Decision Making with If Statement

The if statement may be implemented in different forms depending on the complexity of

conditions to be tested.

 Simple if statement

 if ... else statement

 Nested if ... else statement

 else if ladder

1.5.1.1. Simple If Statement

The syntax of the “if statement” is shown below

if(expression)

statements;

Where a statement may consist of a single statement, a compound statement, or nothing. The

expression must be enclosed in parentheses. If the expression evaluates to true, the statement is

executed, otherwise ignored.

The following program demonstrates the if statement

class Test

{

Notes by: - Rajan Shukla

statement-2;

public static void main(String args[])

{

int x = 10;

if(x < 20)

{

System.out.print("This is if statement");

}

}

}

This would produce the following result

This is if statement

1.5.1.2. The If ... Else Statement

This form of if allows either-or condition by providing an else clause.

The syntax of the if-else statement is the following

if(expression)

else

If the expression evaluates to true i.e., a non-zero value, the statement-1 is executed,

otherwise statement-2 is executed. The statement-1 and statement-2 can be a single statement, or a

compound statement, or a null statement.

The following program demonstrates the if…else statement

public class Test

{

public static void main(String args[])

{

int x = 30;

if(x < 20)

{

System.out.print("This is if statement");

}

else

statemen-1;

Notes by: - Rajan Shukla

If (expression2)

body of else;

{

System.out.print("This is else statement");

}

}

}

This would produce the following result

This is else statement

1.5.1.3. Nested if ... else Statement

A Nested if is an if that has another if in it's 'if's' body or in it's else's body. The nested if can

have one of the following three forms

Example 1

If (expression1)

{

statement-1;

else

statement-2;

}

else

Example 2

else

{

}

If (expression2)

statement-1;

else

statement-2;

Example 3

If (expression1)

body-of-if;

If (expression1)

Notes by: - Rajan Shukla

public static void main(String args[])

{

}

else

{

}

If (expression2)

statement-1;

else

statement-2;

If (expression3)

statement-3;

else

statement-4;

The following program demonstrates the nested if…else statement

public class Test

{

{

int x = 30;

int y = 10;

{

If (y == 10)

{

System.out.print("X = 30 and Y = 10");

}

}

}

}

This would produce the following result

X = 30 and Y = 10

if (x == 30)

Notes by: - Rajan Shukla

public static void main(String args[])

if (x == 10)

1.5.1.4. The else-if Ladder

A common programming construct in the JAVA is the if-else-if ladder , which is often also

called the if-else-if staircase because of it's appearance.

It takes the following general form

if (expression1)

statement1;

else

if (expression2)

statement2;

else

if (expression3)

statement3;

else

statement n;

The following program demonstrates the else-if ladder

public class Test

{

{

int x = 30;

{

}

else

System.out.print("Value of X is 10");

If (x == 20)

{

System.out.print("Value of X is 20");

}

else

if (x == 30)

{

Notes by: - Rajan Shukla

break; //optional

case value :

break; //optional

}

else

{

}

}

}

System.out.print("Value of X is 30");

System.out.print("This is else statement");

This would produce the following result

Value of X is 30

1.5.2. Switch Statement

JAVA provides a multiple branch selection statement known as switch.

The syntax of enhanced for loop is

Switch (expression)

{

case value :

//Statements

//Statements

//One can have any number of case statements.

//Statements

}

The following program demonstrates the switch statement

class SwitchDemo

{

public static void main(String[] args)

{

int month = 8;

switch (month)

default : //Optional

Notes by: - Rajan Shukla

{

case 1 : System.out.println("January");

break;

case 2 : System.out.println("February");

break;

case 3 : System.out.println("March");

break;

case 4 : System.out.println("April");

break;

case 5 : System.out.println("May");

break;

case 6 : System.out.println("June");

break;

case 7 : System.out.println("July");

break;

case 8 : System.out.println("August");

break;

case 9 : System.out.println("September");

break;

case 10 : System.out.println("October");

break;

case 11 : System.out.println("November");

break;

case 12 : System.out.println("December");

break;

default : System.out.println("Invalid month.");

break;

}

}

}

In this case, "August" is printed to standard output.

Notes by: - Rajan Shukla

1.5.2.1.Nested Switch

One can use switch as part of the statement sequence of an outer switch. This is called

a nested switch. Since a switch statement defines in its own block, no conflicts arise between the case

statements in the inner switch and those in the outer switch.

switch(count)

{

case 1 :

switch(target)

{

case 0 :

System.out.println("target is zero");

break;

case 1 :

System.out.println("target is one");

break;

}

break;

case2 : //. . .

}

Here the case 1 – statement is inner switch does not conflict with the case 1 : statement in the

outer switch. The count variable is only compared with the list of cases at the outer level. if the count

is 1, then target is compared with the inner list cases.

No two case constants in the same switch can have individual values. A switch statement

enclosed by an outer switch can have case constants in common.

1.5.3. The while Statement

The most simple and general looping structure available in JAVA is the while statement.

The syntax of while loop is

while(condition)

{

// loop-body

}

Notes by: - Rajan Shukla

value of x : 12

The following program demonstrates the while statement

public class Test

{

public static void main(String args[])

{

int x = 10;

while (x < 20)

{

System.out.print("value of x : " + x);

x++;

System.out.print("\n");

}

}

}

This would produce the following result

value of x : 10

value of x : 11

value of x : 13

value of x : 14

value of x : 15

value of x : 16

value of x : 17

value of x : 18

value of x : 19

1.5.4. The do while Statement

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to

execute at least one time.

The syntax of the do-while loop is

do

{

Notes by: - Rajan Shukla

loop-body;

}

While (condition);

The following program demonstrates the do-while statement

public class Test

{

public static void main(String args[])

{

int x = 10;

do

{

System.out.print("value of x : " + x);

x++;

System.out.print("\n");

}

While (x < 20);

}

}

This would produce the following result

value of x : 10

value of x : 11

value of x : 12

value of x : 13

value of x : 14

value of x : 15

value of x : 16

value of x : 17

value of x : 18

value of x : 19

Notes by: - Rajan Shukla

for (i=1; i<=10; i++)

1.5.5. The for Statement

The for loop is the easiest to understand of the JAVA loops. All its loop-control elements are

gathered in one place (on the top of the loop), while in the other loop construction of C++ , they(top-

control elements) are scattered about the program.

The Syntax of the for loop statement is

for(initialization expression(s); test condition; update expression)

{

loop-body;

}

//program of for loop

class forTest

{

public static void main(String args[])

{

int i;

System.out.println(i);

}

}

This would produce the following result

1

2

..

.

.

10

1.5.6. The break Keyword

The break keyword is used to stop the entire loop. The break keyword must be used inside

any loop or a switch statement. The break keyword will stop the execution of the innermost loop and

start executing the next line of code after the block.

The syntax of a break is a single statement inside any loop

Notes by: - Rajan Shukla

break;

The following program demonstrates the break keyword

public class Test

{

public static void main(String args[])

{

int [] numbers = {10, 20, 30, 40, 50};

for (int x : numbers)

{

If (x == 30)

{

break;

}

System.out.print(x);

System.out.print("\n");

}

}

}

This would produce the following result

10

20

1.5.7. The continue Keyword

The continue keyword can be used in any of the loop control structures. It causes the loop to

immediately jump to the next iteration of the loop.

 In a for loop, the continue keyword causes flow of control to immediately jump to the update

statement

 In a while loop or do/while loop, flow of control immediately jumps to the Boolean

expression

The syntax of a continue is a single statement inside any loop

continue;

Notes by: - Rajan Shukla

The following program demonstrates the continue keyword

public class Test

{

public static void main(String args[])

{

int [] numbers = {10, 20, 30, 40, 50};

for (int x : numbers)

{

If (x == 30)

{

continue;

}

System.out.print(x);

System.out.print("\n");

}

}

}

This would produce the following result

10

20

40

50

1.6. Programs

1) Write a program in java to print your name?

2) Program for creating class students and printing the data for two objects?

3) Write a program in java to demonstrate the arithmetic operators?

4) Write a program in java, to calculate the area and circumference of circle?

5) Write a program in java to calculate the area and perimeter of square?

6) Write a program in java calculate the area and perimeter of rectangle?

7) Write a program in java to demonstrate the math functions?

8) Write a program in java to find the large/small no among the two nos?

Notes by: - Rajan Shukla

9) Write a program in java to check the no odd or even?

10) Write a program in java to find the large/small no among the three nos?

11) Write a program in java to check ovel or consonants?

12) Write a program in java to reverse the given nos?

13) Write a program in java to print the multiplication table of 10?

14) Write a program in java to check the no is divisible by 7?

15) Write a program in java to print your name five times?

16) Write a program in java to find the sum of digit of given no?

17) Write a program in java to find the no of and sum of all integers greater than 100 and less

than 200 that are divisible by7.

18) Write a program in java to find all the odd nos between 120 to 210?

19) Write a program in java to generates the fibbonacci series of given no?

20) Write a program in java to find the factorial no of given no?

21) Write a program in java to check the prime no?

22) Write a program in java to print the following outputs?

a) b) c) d) e)

1 1 * 1 1 1 1 1 *

1 2 2 2 * * 2 2 2 2 * * *

1 2 3 3 3 3 * * * 3 3 3 * * * * *

1 2 3 4 4 4 4 4 * * * * * 4 4 * * * * * * *

1 2 3 4 5 5 5 5 5 5 * * * * * * 5 * * * * * * * * *

End of Unit-I

	Introduction to java
	1.1. Java Features and Java Programming Environment
	1. Simple
	2. Object-Oriented
	3. Platform independent
	4. Secured
	5. Robust
	6. Architecture neutral
	7. Portable
	8. Dynamic
	9 Interpreted
	10. High Performance
	11. Multithreaded
	12. Distributed

	1.1.2. Java Programming Environment
	1. JAVA Development Kit (JDK)
	• appletviewer (for viewing JAVA applets) –
	• javac (JAVA compiler)–
	• java (java interpreter)
	• javap (JAVA disassemble) –
	2. JAVA Virtual Machine(JVM) & Byte Code

	1.1.3. Simple Java Programming
	Understanding first JAVA program
	Different codes to write the main method

	1.2. Defining a class, creating object and accessing class members
	1.2.1. Class
	A simple class example
	student std=new student();
	1.2.2. Object
	Simple Example of Object and Class
	1.2.3. new keyword
	Example-2 of Object and Class
	1.2.4. Method in JAVA
	Syntax of method is
	Example of a Method

	1.3. JAVA Tokens
	1.3.1. JAVA Key Words
	1.3.2. Constants
	Real Constants
	Single Character Constants
	String Constants
	Backslash Character Constants
	1.3.3. Variable
	Variable declarations example
	Variable initialization in declaration example
	Types of variables example
	1.3.4. Data Types in JAVA
	String Objects
	String constants example
	The string declaration example
	Arrays

	1.4. Operator and Expression
	1.4.1. Arithmetic Operators
	The following Program Demonstrate the use of Basic arithmetic operators
	1.4.2. Increment and Decrement Operators
	The following program demonstrates the increment operator.
	1.4.3. Relational Operators
	Following program demonstrate the use of Relational Operator ==, !=, >, <, >= and <=
	1.4.4. Bitwise Operators
	The following is the Demonstrating example of Bitwise Operators
	1.4.5. Logical Operators
	The following program Demonstrates the use of logical operators.
	1.4.5. Assignment Operators
	The following program demonstrates the assignment operators

	Special Operators
	1.4.6 Conditional Operator (? :)
	The following program demonstrates the conditional operator
	1.4.7. instanceof Operator
	1.4.8. Precedence of JAVA Operators
	1.4.9. Mathematical functions
	Program for demonstrating mathematical functions

	1.5. Decision making and looping
	1.5.1. Decision Making with If Statement
	1.5.1.1. Simple If Statement
	The following program demonstrates the if statement
	1.5.1.2. The If Else Statement
	The following program demonstrates the if…else statement
	1.5.1.3. Nested if else Statement
	Example 1
	Example 2
	Example 3
	The following program demonstrates the nested if…else statement
	1.5.1.4. The else-if Ladder
	The following program demonstrates the else-if ladder
	1.5.2. Switch Statement
	The following program demonstrates the switch statement
	1.5.2.1.Nested Switch
	1.5.3. The while Statement
	The following program demonstrates the while statement
	1.5.4. The do while Statement
	The following program demonstrates the do-while statement
	1.5.5. The for Statement
	//program of for loop
	1.5.6. The break Keyword
	The following program demonstrates the break keyword
	1.5.7. The continue Keyword
	The following program demonstrates the continue keyword

	1.6. Programs
	End of Unit-I

